


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, data, and basic tasks   
3 Data preparation and reduction Project 1 out 
4 Data preparation and reduction   
5 Data reduction and similarity metrics   
6 Dimension reduction 

7 Introduction to D3  Project 2 out 
8 Bias in visualization 
9 Perception and cognition   

10 Visual design and aesthetics   
11 Cluster and pattern analysis   
12 High-Dimensional data visualization: linear methods 
13 High-D data vis.: non-linear methods, categorical data  Project 3 out 
14 Computer graphics and volume rendering   
15 Techniques to visualize spatial (3D) data 
16 Scientific and medical visualization 
17 Scientific and medical visualization 
18 Non-photorealistic rendering Project 4 out 
19 Midterm   
20 Principles of interaction   
21 Visual analytics and the visual sense making process   
22 Visualization of graphs and hierarchies 
23 Visualization of text data Project 5 out 
24 Visualization of time-varying and time-series data 
25 Memorable visualizations, visual embellishments  
26 Evaluation and user studies   
27 Narrative visualization and storytelling    
28 Data journalism  



Data summarization 

 data reduction 

 cluster centers, shapes, and statistics  

 

Customer segmentation 

 collaborative filtering 

 

Social network analysis 

 find similar groups of friends (communities) 

 

Precursor to other analysis 

 use as a preprocessing step for classification and outlier detection 

 

 

 

 



With 1,000s of attributes (dimensions) which ones are 

relevant and which one are not? 

 

 
avoid keep 

histogram of 
pairwise distances 
in N-D space 



How to measure attribute “worthiness” 

 use entropy 

 

Entropy 

 originates in thermodynamics  

 measures lack of order or predictability 

 

Entropy in statistics and information theory 

 has a value of 1 for uniform distributions (not predictable)  

 knowing the value has a lot of information (high surprise) 

 a value of 0 for a constant value (fully predicable) 

 knowing the value has zero information (low surprise) 

 



Assume m bins, 1  i  m: 

 

 

 

 

 

 

 

Algorithm: 

 start with all attributes and compute distance entropy  

 greedily eliminate attributes that reduce the entropy the most 

 stop when entropy no longer reduces or even increases  

E high E low 

Binary source 

(e.g. coin) 



 

 

 

 

 

 

 

 

Two options: 

 top down (divisive) 

 bottom up (agglomerative) 



 

 

 

 

 

 

 

 

 

How to merge? 



Single linkage  
 distance = minimum distance between all mi · mj pairs of objects 

 joins the closest pair 

 

Worst (complete) linkage 
 distance = maximum distance between all mi · mj pairs of objects 

 joins the pair furthest apart 

 

Group-average linkage  
 distance = average distance between all object pairs in the groups  

 

Other methods: 
 closest centroid, variance-minimization, Ward’s method 



Centroid-based methods tend to merge large clusters 

 

Single linkage method can merge chains of closely related 

points to discover clusters of arbitrary shape 

 but can also (inappropriately) merge two unrelated clusters, when 

the chaining is caused by noisy points between two clusters 

 

 

 

 

 

 



Complete (worst-case) linkage method tends to create 

spherical clusters with similar diameter 

 will break up the larger odd-shaped clusters into smaller spheres   

 also gives too much importance to data points at the noisy 

fringes of a cluster 

 

 



The group average, variance, and Ward’s methods are more 

robust to noise due to the use of multiple linkages in the 

distance computation 

 

Hierarchical methods are sensitive to a small number of 

mistakes made during the merging process 

 can be due to noise 

 no way to undo these mistakes  

 



Highly-cited density-based hierarchical clustering algorithm 

(Ester et al. 1996) 

 clusters are defined as density-connected sets 

 epsilon-distance neighbor criterion (Eps) 

              NEps(p) = {q ∈D | dist(p,q) ≤ Eps} 

 minimum point cluster membership and core point (MinPts)  

              |NEps(q)| ≥ MinPts 

 notions of density-connected & density-reachable (direct, indirect) 

 a point p is directly density-reachable from a point q wrt. Eps, 

MinPts if  

               p ∈ NEps(q) and 

               |NEps(q)| ≥ MinPts (core point condition) 

 

 

 







The distance between a point P and a distribution D 

 measures how many standard deviations P                                      

is away from the mean of D 

 S is the covariance matrix of the distribution D 

 the Mahanalobis distance DM of a point x                                           

to a cluster center m is 

 

 

 x and m are N-dimensional vectors 

 S is a N×N matrix 

 the outcome DM(x) is a single-dimensional                                              

number  (a scalar) 

 

 

 

 

Mahalanobis  
distance DM(x) 

x 

m 



Better match for point distributions 

 overlapping clusters are now possible 

 better match with real world?  

 Gaussian mixtures 

 

Need a probabilistic algorithm 

 Expectation-Maximization 



EM Algorithm (Mixture Model) 

• Initialize K cluster centers 

• Iterate between two steps 

– Expectation step: assign n points to m clusters/classes 

 

 

 

 

– Maximation step: estimate model parameters 
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do similar also for 

covariance matrix S  





Iteration 1 

 
The cluster 

means are 

randomly 

assigned  



Iteration 2 



Iteration 5 



Iteration 25 



Procedure 

 maximize inter-class variance 

 

 minimize intra-class variance 

 

 

 using this ratio                                        P is low-Dim projection 

 

 can be solved using Eigenvector decomposition  

 

 finds a basis that maximally                                                    

separates the classes  

 Dim(P) is the # of classes g 

 

 

Fisher Criterion 



 t-distributed stochastic neighbor embedding 



Uses the following density-based (probabilistic) distance 

metric 

 

 

 

 

Measures how (relatively) close xj is from xi, considering a 

Gaussian distribution around xi with a given variance σ2
i.  

 this variance is different for every point 

 t is chosen such that points in dense areas are given a smaller 

variance than points in sparse areas 



Use a symmetrized version of the conditional similarity: 

 

 

 

Similarity (distance) metric for mapped points: 

 

 

 

This uses the t-student distribution with one degree of 

freedom, or Cauchy distribution, instead of a Gaussian 

distribution 

 



Can use mass-spring system enforcing minimum of  |pij−qij| 

The classic handwritten 

digits datasets. It contains 1,797 

images with 8∗8=64 pixels each. 





See this webpage  

https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm


Cluster analysis 

 detect and eliminate irrelevant (noisy) attributes using entropy 

 build a cluster hierarchy bottom-up or top-down 

 different metrics to join points and clusters 

 the DBSCAN algorithm for more noise-robust clustering of 

arbitrary shapes 

 EM-ML probabilistic clustering as an extension of k-means for less 

sensitivity to noise and overlapping clusters 

 LDA to maximize separations of clusters (and as a tradeoff 

minimize intra-cluster spread)   

 more sophisticated local density-based clustering and dimension 

reduction using t-SNE 

 


