# CSE 332 INTRODUCTION TO VISUALIZATION

### CLUSTER ANALYSIS

### **KLAUS MUELLER**

#### COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

| Lecture | Торіс                                                   | Projects      |
|---------|---------------------------------------------------------|---------------|
| 1       | Intro, schedule, and logistics                          |               |
| 2       | Applications of visual analytics, data, and basic tasks |               |
| 3       | Data preparation and reduction                          | Project 1 out |
| 4       | Data preparation and reduction                          |               |
| 5       | Data reduction and similarity metrics                   |               |
| 6       | Dimension reduction                                     |               |
| 7       | Introduction to D3                                      | Project 2 out |
| 8       | Bias in visualization                                   |               |
| 9       | Perception and cognition                                |               |
| 10      | Visual design and aesthetics                            |               |
| 11      | Cluster and pattern analysis                            |               |
| 12      | High-Dimensional data visualization: linear methods     |               |
| 13      | High-D data vis.: non-linear methods, categorical data  | Project 3 out |
| 14      | Computer graphics and volume rendering                  |               |
| 15      | Techniques to visualize spatial (3D) data               |               |
| 16      | Scientific and medical visualization                    |               |
| 17      | Scientific and medical visualization                    |               |
| 18      | Non-photorealistic rendering                            | Project 4 out |
| 19      | Midterm                                                 |               |
| 20      | Principles of interaction                               |               |
| 21      | Visual analytics and the visual sense making process    |               |
| 22      | Visualization of graphs and hierarchies                 |               |
| 23      | Visualization of text data                              | Project 5 out |
| 24      | Visualization of time-varying and time-series data      |               |
| 25      | Memorable visualizations, visual embellishments         |               |
| 26      | Evaluation and user studies                             |               |
| 27      | Narrative visualization and storytelling                |               |
| 28      | Data journalism                                         |               |

# FINDING THE NEEDLE – CLUSTER ANALYSIS

#### Data summarization

- data reduction
- cluster centers, shapes, and statistics

#### Customer segmentation

collaborative filtering

#### Social network analysis

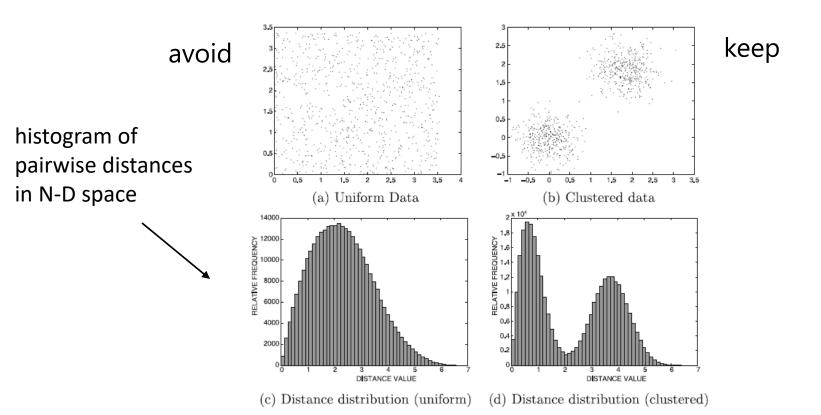
find similar groups of friends (communities)

#### Precursor to other analysis

use as a preprocessing step for classification and outlier detection

# ATTRIBUTE SELECTION

# With 1,000s of attributes (dimensions) which ones are relevant and which one are not?



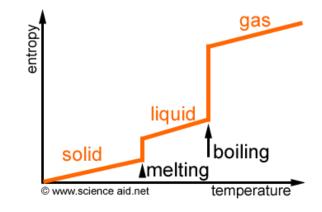
# ATTRIBUTE SELECTION

#### How to measure attribute "worthiness"

use entropy

#### Entropy

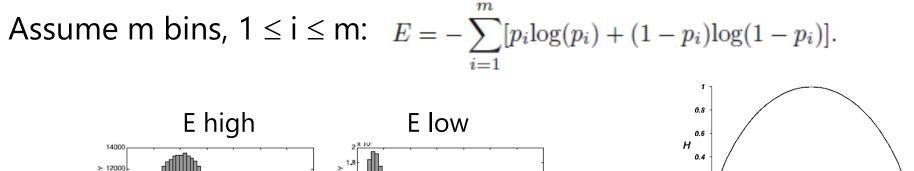
- originates in thermodynamics
- measures lack of order or predictability

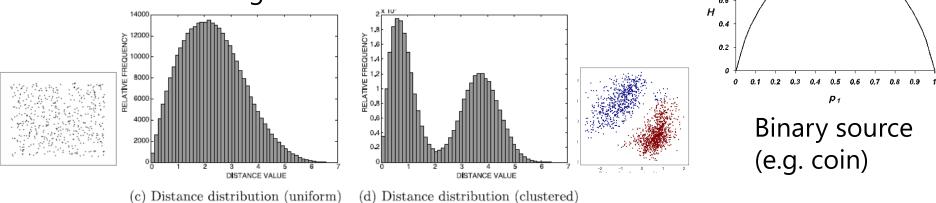


Entropy in statistics and information theory

- has a value of 1 for uniform distributions (not predictable)
- knowing the value has a lot of information (high surprise)
- a value of 0 for a constant value (fully predicable)
- knowing the value has zero information (low surprise)

### ENTROPY

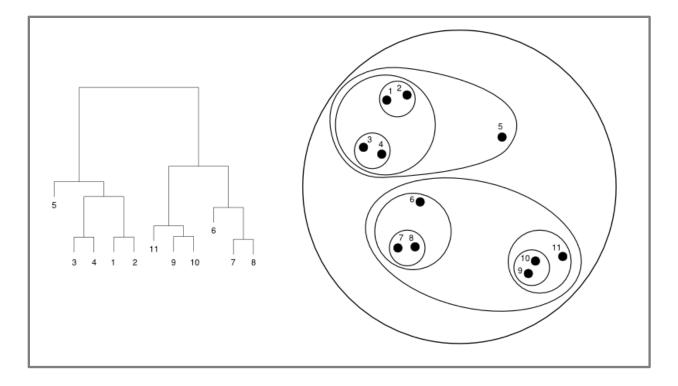




#### Algorithm:

- start with all attributes and compute distance entropy
- greedily eliminate attributes that reduce the entropy the most
- stop when entropy no longer reduces or even increases

# HIERARCHICAL CLUSTERING



Two options:

- top down (divisive)
- bottom up (agglomerative)

### BOTTOM-UP AGGLOMERATIVE METHODS

Algorithm AgglomerativeMerge(Data: D)begin

Initialize  $n \times n$  distance matrix M using  $\mathcal{D}$ ;

repeat

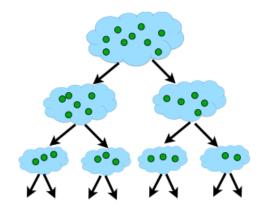
Pick closest pair of clusters i and j using M; Merge clusters i and j;

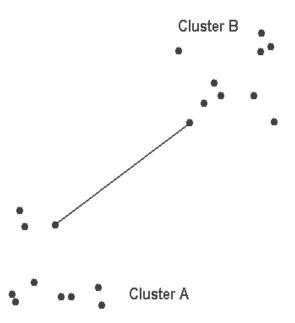
Delete rows/columns i and j from M and create

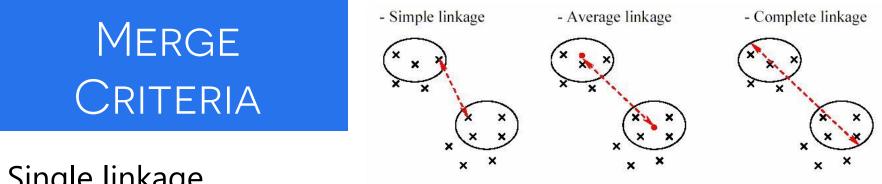
a new row and column for newly merged cluster; Update the entries of new row and column of M; until termination criterion; return current merged cluster set;

end

How to merge?







Single linkage

- distance = minimum distance between all  $m_i \cdot m_i$  pairs of objects
- joins the closest pair

#### Worst (complete) linkage

- distance = maximum distance between all  $m_i \cdot m_i$  pairs of objects
- joins the pair furthest apart

#### Group-average linkage

distance = average distance between all object pairs in the groups 

Other methods:

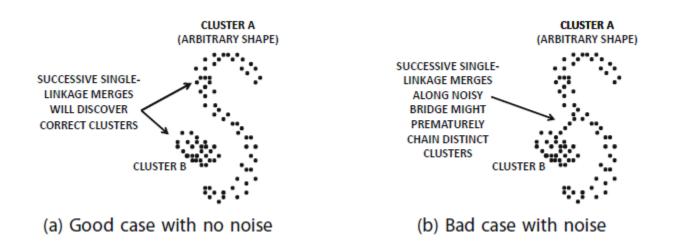
closest centroid, variance-minimization, Ward's method 

### COMPARISON

Centroid-based methods tend to merge large clusters

Single linkage method can merge chains of closely related points to discover clusters of arbitrary shape

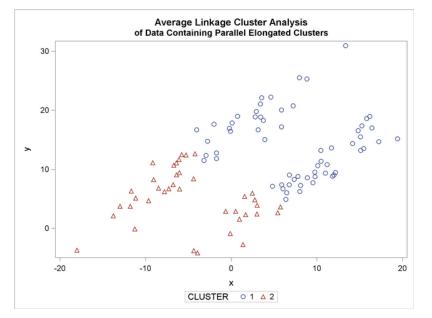
 but can also (inappropriately) merge two unrelated clusters, when the chaining is caused by noisy points between two clusters



### COMPARISON

Complete (worst-case) linkage method tends to create spherical clusters with similar diameter

- will break up the larger odd-shaped clusters into smaller spheres
- also gives too much importance to data points at the noisy fringes of a cluster

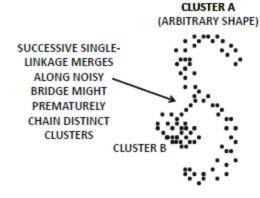


### COMPARISON

The group average, variance, and Ward's methods are more robust to noise due to the use of multiple linkages in the distance computation

Hierarchical methods are sensitive to a small number of mistakes made during the merging process

- can be due to noise
- no way to undo these mistakes



(b) Bad case with noise

# DBSCAN

Highly-cited density-based hierarchical clustering algorithm (Ester et al. 1996)

- clusters are defined as density-connected sets
- epsilon-distance neighbor criterion (Eps)

 $N_{Eps}(p) = \{q \in D \mid dist(p,q) \le Eps\}$ 

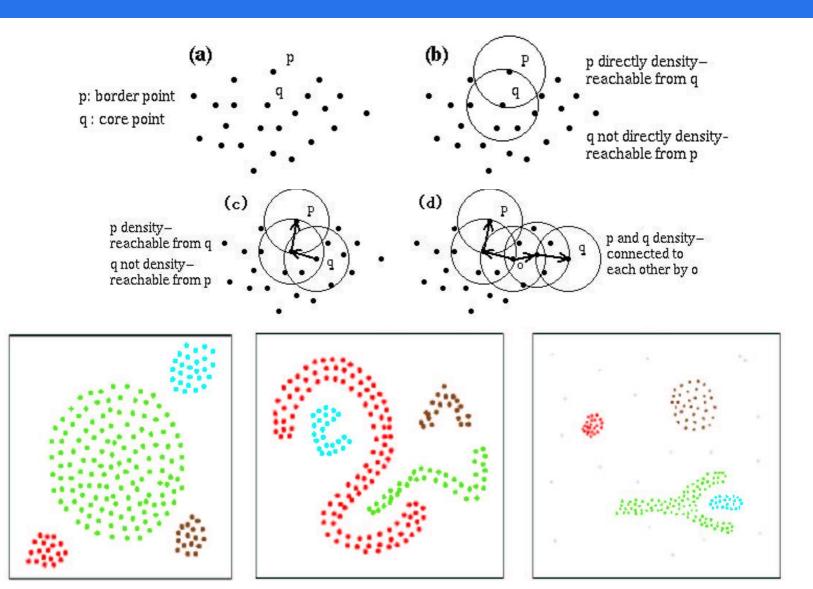
minimum point cluster membership and core point (MinPts)

 $|N_{Eps}(q)| \ge MinPts$ 

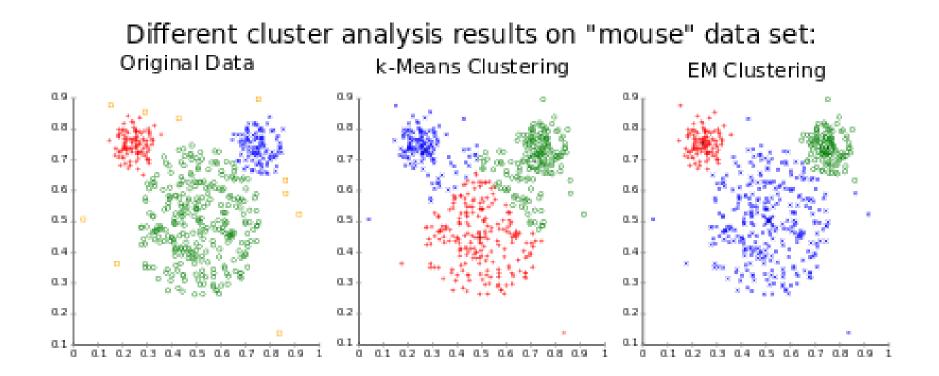
- notions of density-connected & density-reachable (direct, indirect)
- a point p is directly density-reachable from a point q wrt. Eps, MinPts if

 $p \in N_{Eps}(q)$  and  $|N_{Eps}(q)| \ge MinPts$  (core point condition)

# DBSCAN



### PROBABILISTIC EXTENSION TO K-MEANS



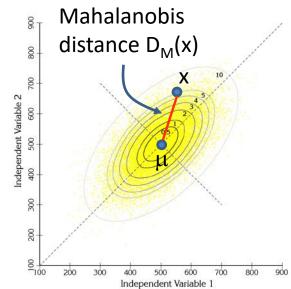
# MAHALANOBIS DISTANCE

The distance between a point P and a distribution D

- measures how many standard deviations P is away from the mean of D
- S is the covariance matrix of the distribution D
- the Mahanalobis distance  $D_M$  of a point x to a cluster center  $\mu$  is

$$D_M(x) = \sqrt{(x-\mu)^T S^{-1}(x-\mu)}.$$

- x and μ are N-dimensional vectors
- S is a N×N matrix
- the outcome D<sub>M</sub>(x) is a single-dimensional number (a scalar)



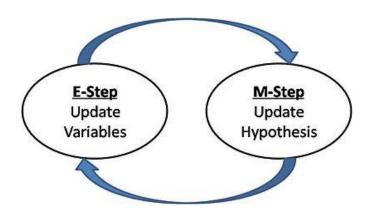
### PROBABILISTIC CLUSTERING

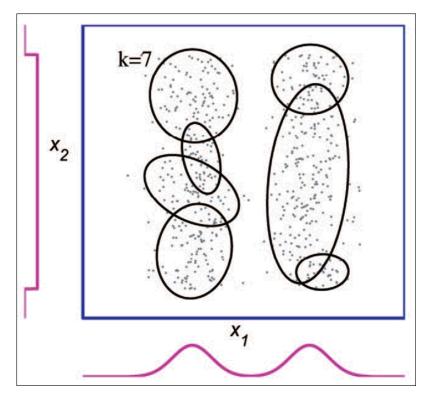
Better match for point distributions

- overlapping clusters are now possible
- better match with real world?
- Gaussian mixtures

Need a probabilistic algorithm

Expectation-Maximization





# EM Algorithm (Mixture Model)

- Initialize K cluster centers
- Iterate between two steps
  - Expectation step: assign n points to m clusters/classes

$$P(d_i \in c_k) = w_k P(d_i | c_k) / \sum_j w_j P(d_i | c_j)$$
$$\sum_j \Pr(d_i \in c_k)$$
$$w_k = \frac{i}{n} = \text{probability of class } c_k$$

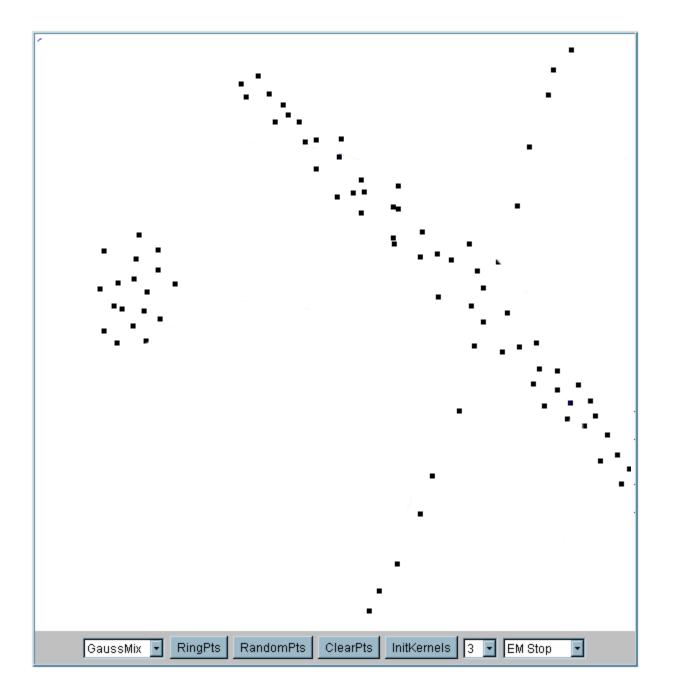
– Maximation step: estimate model parameters

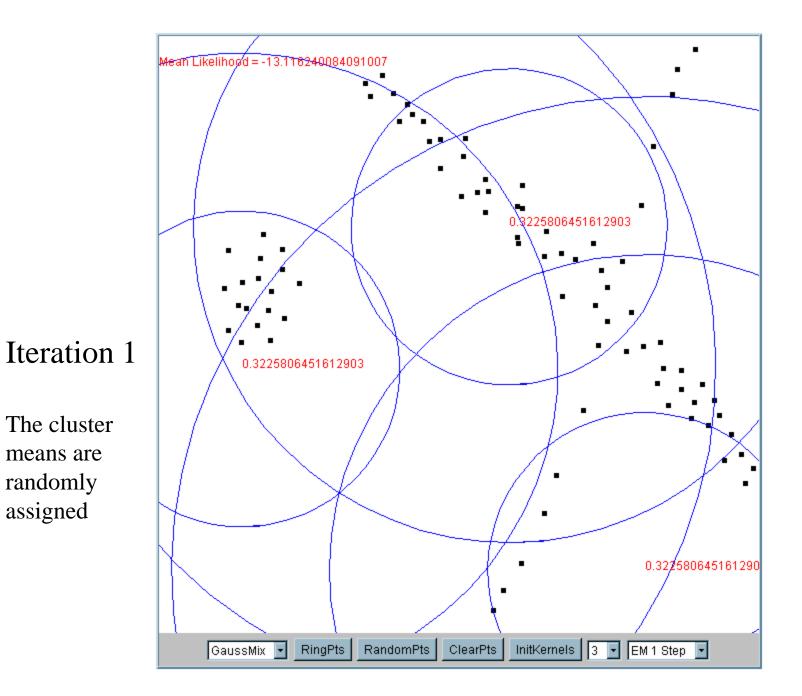
do similar also for covariance matrix S

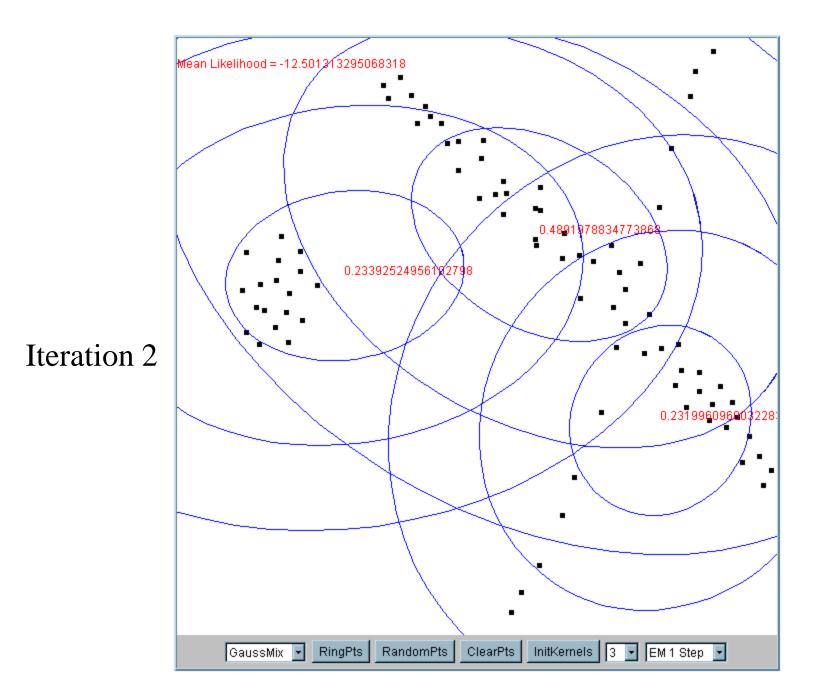
$$\mu_k = \frac{1}{n} \sum_{i=1}^n \frac{d_i P(d_i \in c_k)}{\sum_j P(d_i \in c_j)}$$

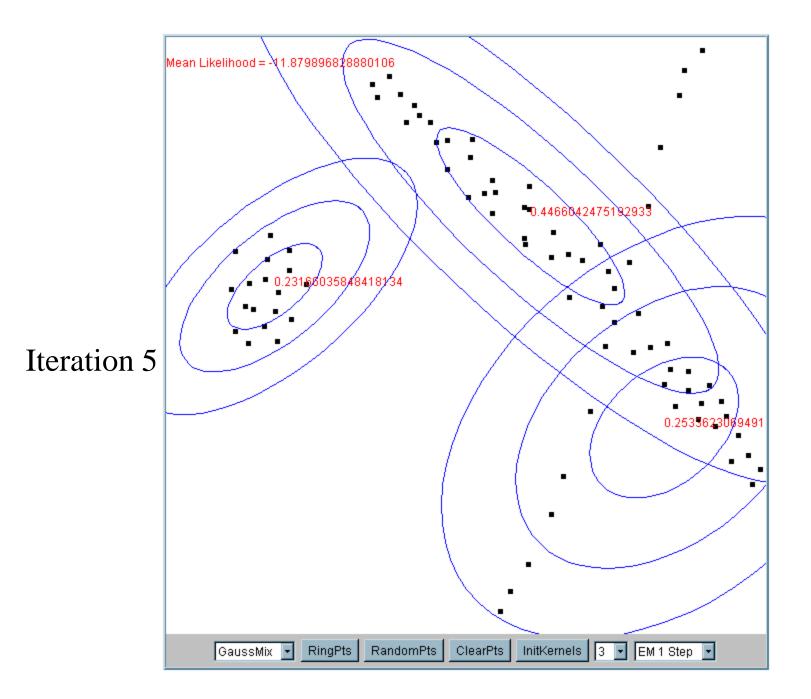
probability P that  $d_i$  is in class  $c_i$ 

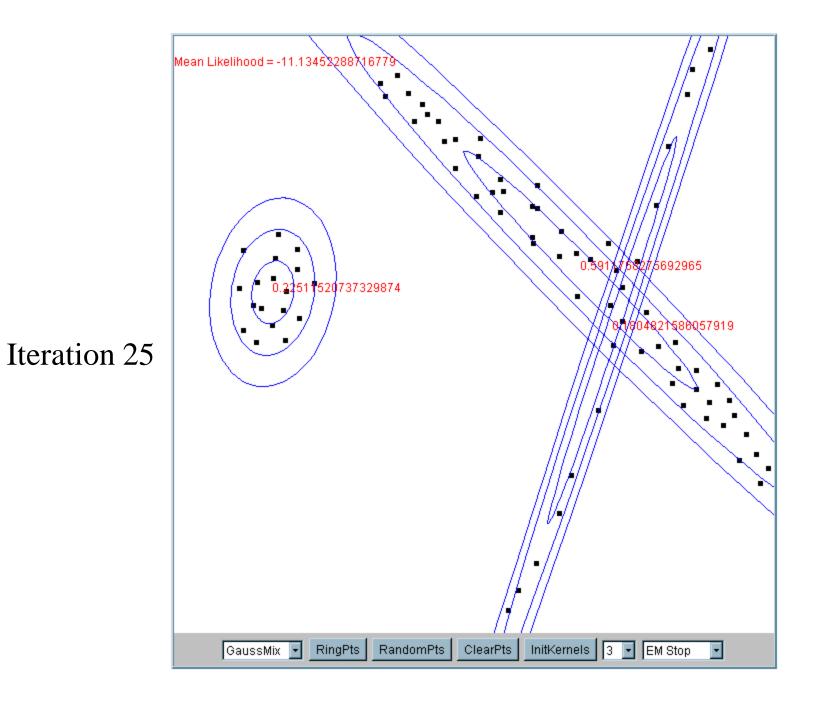
(Mahanalobis distance of  $d_i$  to  $c_i$ )











# LINEAR DISCRIMINANT ANALYSIS (LDA)

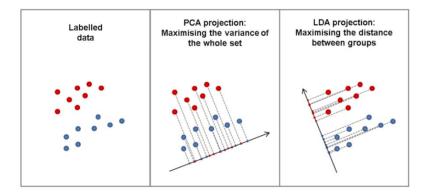
#### Procedure

- maximize inter-class variance
- minimize intra-class variance

$$\begin{split} S_b &= \sum_{i=1}^g N_i (\overline{x}_i - \overline{x}) (\overline{x}_i - \overline{x})^T \\ S_w &= \sum_{i=1}^g \sum_{j=1}^{N_i} (x_{i,j} - \overline{x}_i) (x_{i,j} - \overline{x}_i)^T \end{split}$$

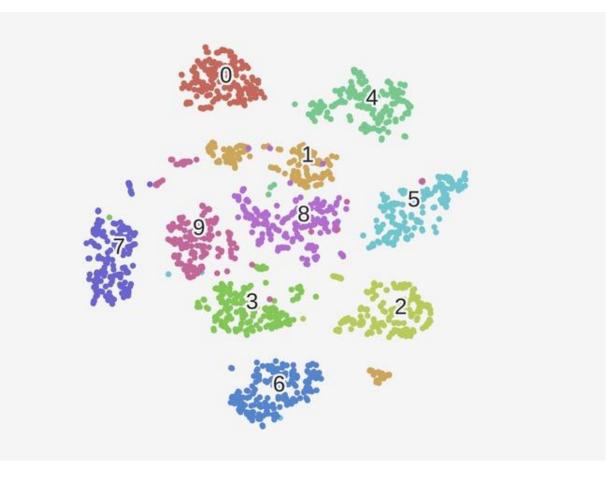
• using this ratio  $P_{lda} = \arg \max_{P} \frac{\left|P^{T}S_{b}P\right|}{\left|P^{T}S_{w}P\right|}$  • Fisher Criterion P is low-Dim projection

- can be solved using Eigenvector decomposition
- finds a basis that maximally separates the classes
- Dim(P) is the # of classes g





#### t-distributed stochastic neighbor embedding



# T-SNE DISTANCE METRIC

Uses the following density-based (probabilistic) distance metric

$$p_{j|i} = \frac{\exp(-|x_i - x_j|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-|x_i - x_k|^2 / 2\sigma_i^2)}$$

Measures how (relatively) close  $x_j$  is from  $x_i$ , considering a Gaussian distribution around  $x_i$  with a given variance  $\sigma_i^2$ .

- this variance is different for every point
- t is chosen such that points in dense areas are given a smaller variance than points in sparse areas

## T-SNE IMPLEMENTATION

Use a symmetrized version of the conditional similarity:

$$p_{ij} = \frac{p_{jli} + p_{ilj}}{2N}$$

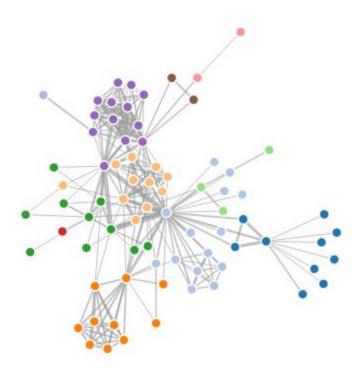
Similarity (distance) metric for mapped points:

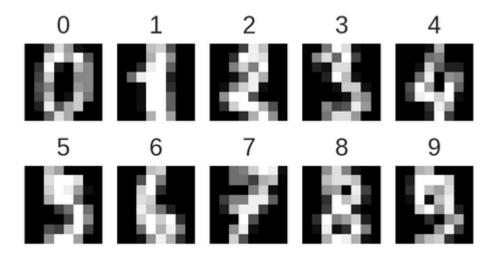
$$q_{ij} = \frac{f(|x_i - x_j|)}{\sum_{k \neq i} f(|x_i - x_k|)} \quad \text{with} \quad f(z) = \frac{1}{1 + z^2}$$

This uses the t-student distribution with one degree of freedom, or Cauchy distribution, instead of a Gaussian distribution

### LAYOUT

Can use mass-spring system enforcing minimum of  $|p_{ij}-q_{ij}|$ 





The classic *handwritten digits* datasets. It contains 1,797 images with 8\*8=64 pixels each.





See this webpage

### SUMMARY

Cluster analysis

- detect and eliminate irrelevant (noisy) attributes using entropy
- build a cluster hierarchy bottom-up or top-down
- different metrics to join points and clusters
- the DBSCAN algorithm for more noise-robust clustering of arbitrary shapes
- EM-ML probabilistic clustering as an extension of k-means for less sensitivity to noise and overlapping clusters
- LDA to maximize separations of clusters (and as a tradeoff minimize intra-cluster spread)
- more sophisticated local density-based clustering and dimension reduction using t-SNE